Distributions
Example of frequency distribution:
Lithuanian Parliamentary Seats, 2000
Party Abbreviation | Seats Won |
---|---|
ABSK | 51 |
LLS | 33 |
NS | 28 |
TS-LK | 9 |
LVP | 4 |
LKDP | 2 |
LCS | 2 |
LLRA | 2 |
KDS | 1 |
NKS | 1 |
LLS | 1 |
JL/PKS | 1 |
Parameter and parameter space
To illustrate, let’s consider the case of voter turnout where we ask, “Which registered voters cast ballots?” There are two outcomes for each voter: (0) did not cast a ballot and (1) cast a ballot. We can write the following PMF:
\[p(y_i = 0) = \pi\]
\[p(y_i = 1) = 1 - \pi\]
\[Pr(Y \leq y) = \sum_{i \leq y} p(i)\]
The first PMF we will consider applies to binary variables only and can be written as
\[ Pr(Y = y|p) = \begin{cases} 1-p & \text{for } y = 0, \\ p & \text{for } y = 1. \end{cases} \]
\[ Pr(Y = y|p) = p^y(1-p)^{1-y} \]
where \(y = 0\) or \(y = 1\). If we solve equation (10.4) for \(y = 0\) and \(y = 1\), we get the information provided in equation: \(Pr(Y = 0) = p^0(1-p)^{1-0} = 1-p\), and \(Pr(Y = 1) = p^1(1-p)^{1-1} = p\).
\[ Pr(Y = y|n,p) = \binom{n}{y}p^y(1-p)^{n-y} \]
where \(n > y\), \(n\), and \(y\) are positive integers and \(0 \leq p \leq 1\). The variables \(n\) and \(y\) in equation (10.5) represent the number of cases (or observations) and the number of positive outcomes, respectively.
\[ Pr(Y = y \mid \mu) = \frac{\mu^y}{y! \times e^{-\mu}} \]
Given:
\(P(A)=0.4\), \(P(B)=0.3\), \(P(A\cup B)=0.6\)
Find: \(P(A\cap\overline{B})\)
We use the identity:
\[
P(A\cup B) = P(A) + P(B) - P(A\cap B)
\]
Substitute known values:
\[
0.6 = 0.4 + 0.3 - P(A\cap B) \Rightarrow P(A\cap B) = 0.1
\]
Now recall:
\[
P(A) = P(A\cap B) + P(A\cap\overline{B}) \Rightarrow P(A\cap\overline{B}) = P(A) - P(A\cap B)
\]
\[ P(A\cap\overline{B}) = 0.4 - 0.1 = 0.3 \]
Answer:
\(P(A\cap\overline{B})=0.3\)
Given:
\(P(A)=P(B)=P(C)=\frac{1}{4}\), \(P(AB)=0\), \(P(AC)=P(BC)=\frac{1}{16}\)
Find:
We use the inclusion-exclusion formula:
\[
P(A\cup B\cup C) = P(A)+P(B)+P(C) - P(AB)-P(AC)-P(BC)+P(ABC)
\]
Substitute known values:
\[
P(A\cup B\cup C) = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} - 0 - \frac{1}{16} - \frac{1}{16} + 0
\]
Simplify:
\[
P(A\cup B\cup C) = \frac{3}{4} - \frac{1}{8} = \frac{5}{8}
\]
Since the probability that none occur is the complement:
\[
P(\text{none}) = 1 - P(A\cup B\cup C) = 1 - \frac{5}{8} = \frac{3}{8}
\]
Answer:
1. \(P(A\cup B\cup C)=\frac{5}{8}\)
2. \(P(\text{none})=\frac{3}{8}\)
A factory sources light bulbs from two producers:
Factory A provides \(60%\) of the bulbs with a \(90%\) pass rate.
Factory B provides \(40%\) of the bulbs with an \(80%\) pass rate.
Find:
Let:
\(P(A)=0.6\), \(P(B)=0.4\)
\(P(\text{Pass}|A)=0.9\), \(P(\text{Pass}|B)=0.8\)
We use the multiplication rule:
\[
P(\text{A and Pass}) = P(A) \cdot P(\text{Pass}|A) = 0.6 \times 0.9 = 0.54
\]
\[ P(\text{B and Pass}) = P(B) \cdot P(\text{Pass}|B) = 0.4 \times 0.8 = 0.32 \]
Answer:
1. \(P(\text{A and Pass}) = 0.54\)
2. \(P(\text{B and Pass}) = 0.32\)
Let the probability density function be defined as:
\(f(x)=kx+1\) for \(0 < x \leq 2\)
\(f(x)=0\) otherwise
Find:
To ensure \(f(x)\) is a valid probability density function, it must integrate to 1:
\[ \int_0^2 (kx + 1)\,dx = 1 \]
Compute the integral: \[ \int_0^2 (kx + 1)\,dx = \left[\frac{k}{2}x^2 + x\right]_0^2 = \frac{k}{2}(4) + 2 = 2k + 2 \]
Set equal to 1 and solve for \(k\): \[ 2k + 2 = 1 \Rightarrow k = -\frac{1}{2} \]
Now compute the probability: \[ P(1.5 < x < 2) = \int_{1.5}^2 \left(-\frac{1}{2}x + 1\right)\,dx \]
Use antiderivative: \[ \int_{1.5}^2 \left(-\frac{1}{2}x + 1\right)\,dx = \left[-\frac{1}{4}x^2 + x\right]_{1.5}^2 \]
Evaluate: \[ F(2) = -\frac{1}{4}(4) + 2 = -1 + 2 = 1 \\ F(1.5) = -\frac{1}{4}(2.25) + 1.5 = -0.5625 + 1.5 = 0.9375 \]
So: \[ P(1.5 < x < 2) = F(2) - F(1.5) = 1 - 0.9375 = 0.0625 \]
Answer:
1. \(k = -\frac{1}{2}\)
2. \(P(1.5 < x < 2) = 0.0625\)
Given the probability density function:
\(f(x) = -\frac{1}{2}x + 1\) for \(0 \leq x \leq 2\)
\(f(x) = 0\) otherwise
Find the cumulative distribution function \(F(x)\).
To find \(F(x)\), we compute the integral: \[ F(x) = \int_{-\infty}^x f(t)\,dt \]
Since \(f(x)=0\) for \(x<0\) and \(x>2\), we define \(F(x)\) piecewise:
For \(x < 0\): \[ F(x) = 0 \]
For \(0 \leq x \leq 2\): \[ F(x) = \int_0^x (-\frac{1}{2}t + 1)\,dt = \left[-\frac{1}{4}t^2 + t\right]_0^x = -\frac{1}{4}x^2 + x \]
For \(x > 2\): \[ F(x) = 1 \]
Answer:
The cumulative distribution function is: \[
F(x) =
\begin{cases}
0 & \text{if } x < 0 \\
-\frac{1}{4}x^2 + x & \text{if } 0 \leq x \leq 2 \\
1 & \text{if } x > 2
\end{cases}
\]
Any Questions?