Differentiation
The power rule
\[ \frac{dx^n}{dx}=nx^{n-1} \]
The constant rule
\[ y=f(x)=ax \]
\[ f'(x)=\frac{d(ax)}{dx}=a \]
recall: \(x^{-n}=\frac{1}{x^n}\) and \(x^{\frac{1}{n}}=\sqrt[n]{x}\)
The derivative of \(e^x\) is just \(e^x\):
\[ \frac{de^x}{dx}=e^x \]
\[\frac{d(f+g)}{dx}=\frac{df}{dx}+\frac{dg}{dx}\]
\[\frac{d(cf)}{dx}=c\frac{df}{dx}\]
Example:
\[h(x)=x^3+6x^2+1\]
Let’s work out this last one to see the application of the rule a bit more carefully.
\[\frac{dh(x)}{dx}=\frac{d(x^3+6x^2+1)}{dx}\]
\[=\frac{d(x^3)}{dx}+\frac{d(6x^2)}{dx}+\frac{d(-3x)}{dx}+\frac{d(1)}{dx}\]
\[=\frac{d(x^3)}{dx}+6 \frac{d(x^2)}{dx}-3 \frac{d(x)}{dx}+\frac{d(1)}{dx}\]
\[=3x^2+6(2x)-3(1)+0\]
\[=3x^2+12x-3\]
For composite functions looks like \(g(f(x)\), we let \(f\) and \(g\) be differentiable.
\[ g'(u)=g'(f(x)) \]
\[ \frac{dg(f(x))}{dx}=\frac{dg(u)}{du} \frac{du}{dx}, \text{ where } u=f(x) \]
In words, take the derivative of the outer function (\(g\) of \(x\)) evaluated at the inner function (\(f\) of \(x\)), then take the derivative of the inner function (\(f\) of \(x\)), and multiply the two terms.
We can also write it as\((g(f(x)))'=g'(f(x))f'(x)\)
Example: \(h(x)=e^{2x^2}\)
We let \(f(x)=2x^2\) and \(g(x)=e^x\), so \(h(x)=g(f(x))\)
We show below that \(\frac{de^x}{dx}=e^x\) and we can use the fact that the derivative is a linear operator to find that the derivative of \(2x^2\) is \(2\frac{dx^2}{dx}=2(2x)=4x\)
Given this, we can apply the chain rule to get \(h'(x)=g'(u)f'(x)=e^u(4x)=4xe^{2x^2}\)
Example 2:
Let \(h(x)=(2x-a)^2\)
We’ll set \(g(x)=x^2\) and \(f(x)=(2x-a)\), so that \(h(x)=g(f(x))\)
Then \(h'(x)=(g(f(x)))'=g'(f(x))f'(x)=2(2x-a)(2)=8x-4a\)
This is the exponential rule.
\[ \frac{d \ln (x)}{dx}=\frac{1}{x} \]
This is the inverse function of \(a^x\), so \(a^{\log_a x}=x\)
\[ \frac{d \log_a (x)}{dx}=\frac{1}{x \ln (a)} \]
\[\frac{d(f(x)g(x))}{dx}=\frac{df(x)}{dx}g(x)+f(x) \frac{dg(x)}{dx}\]
Let \(f\) and \(g\) be differentiable functions, \((fg)'=f'g+fg'\)
Example:
\(y=f(x)g(x)=(2x+3)(x^2-15)\)
\[ \frac{dy}{dx}=\frac{d(2x+3)}{dx}(x^2-15)+(2x+3) \frac{d(x^2-15)}{dx} \]
\[ =(2)(x^2-15)+(2x+3)(2x) \]
\[ =(2x-30)+(4x^2+6x) \]
\[ 6x^2+6x-30 \]
Quotient rule for \(y=\frac{f(x)}{g(x)}\):
\[ \frac{d}{dx} \frac{f(x)}{g(x)}=\frac{\frac{d(f(x))}{dx}g(x)-f(x) \frac{dg(x)}{dx}}{g(x)^2} \]
Example:
Let \(f(x)=(3x-7) \text{ and } g(x)=(x^3+6)\). We need to find \(\frac{d}{dx}(\frac{3x-7}{x^3+6})\).
\[ \frac{dy}{dx}=\frac{\frac{d(3x-7)}{dx}(x^3+6)-(3x-7) \frac{d(x^3+6)}{dx}}{(x^3+6)^2} \]
\[ =\frac{(x^3+6)(3)-(3x-7)(3x^2)}{36+12x^3+x^6} \]
\[ =\frac{(3x^3+18)-(9x^3-21x^2)}{36+12x^3+x^6} \]
\[ =\frac{-6x^3+21x^2+18}{36+12x^3+x^6} \]
Example:
\[ f(x)= \begin{cases} -(x-2)^2 : x\leq2 \\ \ln (x-2) : x > 2 \end{cases} \]
\[ f'(x)= \begin{cases} -2(x-2) : x < 2 \\ \frac{1}{x-2} : x > 2 \end{cases} \] The point \(x=2\) has no derivative, though it is defined for \(f(x)\).
rules for differentiation
In all these cases, \(f\) and \(g\) are assumed to be differentiable functions, and a is a constant.
Sum rule | \((f(x)+g(x))'=f'(x)+g'(x)\) |
Difference rule | (\(f(x)-g(x))'=f'(x)-g'(x)\) |
Multiply by constant rule | \(f'(ax)=af'(x)\) |
Product rule | \((f(x)g(x))'=f'(x)g(x)+f(x)g'(x)\) |
Quotient rule | \((\frac{f(x)}{g(x)})'=\frac{f'(x)g(x)-f(x)g'(x)}{(g(x))^2}\) |
Chain rule | \((g(f(x))'=g'(f(x))f'(x)\) |
Inverse function rule | \((f^{-1}(x))'=\frac{1}{f'(f^{-1}x)}\) |
Constant rule | \((a)'=0\) |
Power rule | \((x^n)'=nx^{n-1}\) |
Exponential rule 1 | \((e^x)'=e^x\) |
Exponential rule 2 | \((a^x)'=a^x(\ln(a))\) |
Logarithm rule 1 | \((\ln(x))'=\frac{1}{x}\) |
Logarithm rule 2 | \((\log_a(x))'=\frac{1}{x(\ln(a))}\) |
Trigonometric rules | \((\sin(x))'=\cos(x)\) |
\((\cos(x))'=-\sin(x)\) | |
\((\tan(x))'=1+\tan^2(x)\) | |
Piecewise rules | Treat each piece separately |
Find the derivative of \(y=f(x) \cdot g(x) = (13x+2x^3) \cdot (x^5-4x+r)\) with respect to \(x\), using the rules in this chapter.
Apply the product rule:
\(y' = f'(x) \cdot g(x) + f(x) \cdot g'(x)\)
First, compute the derivatives:
\(f(x) = 13x + 2x^3 \Rightarrow f'(x) = 13 + 6x^2\)
\(g(x) = x^5 - 4x + r \Rightarrow g'(x) = 5x^4 - 4\)
Now apply the rule:
\(y' = (13 + 6x^2)(x^5 - 4x + r) + (13x + 2x^3)(5x^4 - 4)\)
Differentiate the following: \[y=(x^3+x+2)^2\]
Apply the chain rule:
If \(y = [u(x)]^2\), then \(y' = 2u(x) \cdot u'(x)\)
Here, \(u(x) = x^3 + x + 2\)
\(u'(x) = 3x^2 + 1\)
So:
\(y' = 2(x^3 + x + 2)(3x^2 + 1)\)
Differentiate the following: \[ y= \left(\frac{x^2+1}{x+1}\right)^2 \]
Apply the chain rule:
Let \(u(x) = \frac{x^2 + 1}{x + 1}\), then
\[ y = u^2 \Rightarrow y' = 2u \cdot u' \]
Now find \(u'(x)\) using the quotient rule:
If \(u = \frac{f(x)}{g(x)}\), then
\[ u' = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2} \]
Let: - \(f(x) = x^2 + 1 \Rightarrow f'(x) = 2x\)
- \(g(x) = x + 1 \Rightarrow g'(x) = 1\)
So:
\[ u' = \frac{2x(x + 1) - (x^2 + 1)}{(x + 1)^2} \]
Now plug back into the chain rule:
\[ y' = 2 \cdot \left( \frac{x^2 + 1}{x + 1} \right) \cdot \left( \frac{2x(x + 1) - (x^2 + 1)}{(x + 1)^2} \right) \]
Differentiate the following: \[ f(x)=(x^3+2) \ln(x^4-5x+3) \]
Apply the product rule:
If \(f(x) = u(x) \cdot v(x)\), then
\[
f'(x) = u'(x)v(x) + u(x)v'(x)
\]
Let:
- \(u(x) = x^3 + 2 \Rightarrow u'(x) = 3x^2\)
- \(v(x) = \ln(x^4 - 5x + 3) \Rightarrow v'(x) = \frac{4x^3 - 5}{x^4 - 5x + 3}\)
Now apply the product rule:
\[
f'(x) = 3x^2 \cdot \ln(x^4 - 5x + 3) + (x^3 + 2) \cdot \frac{4x^3 - 5}{x^4 - 5x + 3}
\]
Find the derivative of the function.
\[ y=\frac{(5 \ln(x+3))e^{3x^3-10x}}{5x^2+2} \]
\[ y'=\frac{f'g-fg'}{g^2}=\frac{(uv)'g-fg'}{g^2}=\frac{(u'v+uv')g-fg'}{g^2} \]
\[ y'=(5x^2+2)^{-2} \left[ \left( \frac{5e^{3x^3-10x}}{x+3}+5\ln(x+3)(9x^2-10)e^{3x^3-10x} \right) \\ \times (5x^2+2)-(5 \ln(x+3))e^{3x^3-10x}(10x) \right] \]
Any Questions?